The purpose of this study was to quantitatively evaluate the axial wall taper of prepared artificial teeth using a non-contact three-dimensional shape measuring system. A total of 54 artificial teeth prepared by pre-clinical dental students for complete cast restorations were evaluated. For quantitative analysis, five cross sections were computer-graphically placed perpendicularly to the z-axis. The surface coordinate values (x, y, z) of each cross section were converted into polar coordinate values (r, theta), which were then graphically rendered to a two-dimensional plane. At four points, each 90 degrees from the distal center point of the cross section, the axial wall taper was quantitatively calculated using a formula based on the differences in radius between the highest and lowest positions of the cross sections of the prepared tooth. The average calculated taper was 5.8 degrees in the distal region, 21.7 degrees in the buccal region, 14.9 degrees in the mesial region and 12.5 degrees in the lingual region. These results suggest that the axial wall taper of prepared teeth can be quantitatively evaluated using this measuring system.
CITATION STYLE
Okuyama, Y., Kasahara, S., & Kimura, K. (2005). Quantitative evaluation of axial wall taper in prepared artificial teeth. Journal of Oral Science, 47(3), 129–133. https://doi.org/10.2334/josnusd.47.129
Mendeley helps you to discover research relevant for your work.