Retroviral insertional mutagenesis provides an effective forward genetic method for identifying genes involved in essential cellular pathways. A Chinese hamster ovary cell line mutant resistant to several bacterial ADP-ribosylating was obtained by this approach. The toxins used catalyze ADP-ribosylation of eukaryotic elongation factor 2 (eEF-2), block protein synthesis, and cause cell death. Strikingly, in the CHO PR328 mutant cells, the eEF-2 substrate of these ADP-ribosylating toxins was found to be modified, but the cells remained viable. A systematic study of these cells revealed the presence of a structural mutation in one allele of the eEF-2 gene. This mutation, Gly717Arg, is close to His715, the residue that is modified to become diphthamide. This Arg substitution prevents diphthamide biosynthesis at His715, rendering the mutated eEF-2 non-responsive to ADP-ribosylating toxins, while having no apparent effect on protein synthesis. Thus, CHO PR328 cells are heterozygous, having wild type and mutant eEF-2 alleles, with the latter allowing the cells to survive even in the presence of ADP-ribosylating toxins. Here, we report the comprehensive characterization of these cells.
CITATION STYLE
Gupta, P. K., Liu, S., & Leppla, S. H. (2010). Characterization of a Chinese hamster ovary cell mutant having a mutation in elongation factor-2. PLoS ONE, 5(2). https://doi.org/10.1371/journal.pone.0009078
Mendeley helps you to discover research relevant for your work.