First human evidence of d-amphetamine induced displacement of a D 2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study

102Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

Abstract

Imaging the competition between D2/3 radioligands and endogenous dopamine is so far the only way to measure dopamine release in the living human brain. The dopamine D2 receptor exists in a high (D2high) and a low-affinity state for dopamine. Under physiological conditions, dopamine is expected to bind to D2high only. [11C]-(+)-4-propyl-9-hydroxynaphthoxazine ((+)-PHNO) is the first D2/3 agonist radioligand for positron emission tomography (PET) imaging in humans. Since [11C]-(+)-PHNO is expected to bind preferentially to D2high, it should be particularly vulnerable to competition with endogenous dopamine. Nine healthy subjects participated in two PET scans, one after administration of d-amphetamine and one after placebo. [11C]-(+)-PHNO PET test re-test variability was determined in 11 healthy subjects. Binding potentials (BPs) were calculated for caudate, putamen, ventral striatum, and globus pallidus. d-Amphetamine led to a significant decrease of [11C]-(+)-PHNO BPs in caudate (-13.2%), putamen (-20.8%), and ventral striatum (-24.9%), but not in globus pallidus (-6.5%). d-Amphetamine-induced displacement correlated with serum d-amphetamine levels in all regions but caudate. This is the first report on competition between endogenous dopamine and a D2/3 agonist radioligand in humans. [11C]-(+)-PHNO PET might be a superior measure for release of endogenous dopamine than PET employing conventional D2/3 antagonist radioligands. © 2008 Nature Publishing Group All rights reserved.

Cite

CITATION STYLE

APA

Willeit, M., Ginovart, N., Graff, A., Rusjan, P., Vitcu, I., Houle, S., … Kapur, S. (2008). First human evidence of d-amphetamine induced displacement of a D 2/3 agonist radioligand: A [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology, 33(2), 279–289. https://doi.org/10.1038/sj.npp.1301400

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free