Na channel distribution in vertebrate skeletal muscle

67Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The loose patch voltage clamp has been used to map Na current density along the length of snake and rat skeletal muscle fibers. Na currents have been recorded from (a) endplate membrane exposed by removal of the nerve terminal, (b) membrane near the endplate, (c) extrajunctional membrane far from both the endplate and the tendon, and (d) membrane near the tendon. Na current densities recorded directly on the endplate were extremely high, exceeding 400 mA/cm2 in some patches. The membrane adjacent to the endplate has a current density about fivefold lower than that of the endplate, but about fivefold higher than the membrane 100-200 µm from the endplate. Small local variations in Na current density are recorded in extrajunctional membrane. A sharp decrease in Na current density occurs over the last few hundred micrometers from the tendon. We tested the ability of tetrodotoxin to block Na current in regions close to and far from the endplate and found no evidence for toxin-resistant channels in either region. There was also no obvious difference in the kinetics of Na current in the two regions. On the basis of the Na current densities measured with the loose patch clamp, we conclude that Na channels are abundant in the endplate and near-endplate membrane and are sparse close to the tendon. The current density at the endplate is two to three orders of magnitude higher than at the tendon. © 1986, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Caldwell, J. H., Campbell, D. T., & Beam, K. G. (1986). Na channel distribution in vertebrate skeletal muscle. Journal of General Physiology, 87(6), 907–932. https://doi.org/10.1085/jgp.87.6.907

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free