Pandemi Covid-19 memiliki dampak serius pada kehidupan masyarakat. Salah satu langkah penting untuk mengatasi pandemi ini terletak pada kemampuan tenaga medis untuk mengidentifikasi pasien yang terinfeksi Covid-19 secara dini. Kemudian segera lakukan prosedur pengobatan dan isolasi pasien. Mendeteksi Covid-19 dari radiograph pasien mungkin menjadi salah satu cara tercepat untuk mengidentifikasi pasien Covid-19, yang didukung oleh penelitian sebelumnya yang menunjukkan gejala abnormal pada radiograph dada pasien Covid-19. Untuk mendeteksi pasien Covid-19 dari rontgen dada (CXR) yang terinspirasi dari penelitian sebelumnya yang menggunakan Artificial Intelligence, aplikasi classifier Machine Learning k-Nearest Neighbor telah dipelajari untuk hal yang sama. 1000 CXR diperoleh dari posisi Anterior-Posterior berlabel dari dataset COVID-Xray-5k, kemudian dipartisi dengan random sampling, 80% untuk training set dan sisanya untuk test set. Citra CXR yang ada dikonversi menjadi citra grayscale dimana diperoleh 149 fitur; 5 fitur adalah Haralick Features dan 144 fitur berasal dari Histogram of Oriented Gradient. Hasil klasifikasi dengan nilai estimasi k, dengan k = 10 mencapai akurasi rata-rata di atas 90% untuk jarak atau metric Euclid, Mahalanobis, Cosine, dan Cityblock. Oleh karena CXR pasien Covid-19 yang tersedia untuk umum terbatas, diperlukan penelitian terhadap dataset yang memiliki jumlah CXR pasien Covid-19 lebih banyak untuk menguji keakuratan classifier.
CITATION STYLE
Nugroho, C. A. (2021). KLASIFIKASI K-NEAREST NEIGHBOR CHEST X-RAY PASIEN COVID-19 DENGAN HARALICK FEATURES DAN HISTOGRAM OF ORIENTED GRADIENT. MATHunesa: Jurnal Ilmiah Matematika, 9(1), 188–195. https://doi.org/10.26740/mathunesa.v9n1.p188-195
Mendeley helps you to discover research relevant for your work.