Autonomous, buoyancy-driven ocean gliders are increasingly used as a platform for the measurement of turbulence microstructure. In the processing of such measurements, there is a sensitive (quartic) dependence of the turbulence dissipation rate, ϵ , on the speed of flow past the sensors, or alternatively, the speed of the glider through the ocean water column. The mechanics of glider flight is therefore examined by extending previous flight models to account for the effects of ocean surface waves. It is found that due to the relatively small buoyancy changes used to drive gliders, the surface wave-induced motion, superimposed onto the steady-state motion, follows to a good approximation the motion of the wave orbitals. Errors expected in measuring ϵ at the ocean near-surface due to wave-induced relative velocities are generally less than 10%. However, pressure perturbations associated with the wave motion can be significant when using the glider-measured pressure signal to infer the glider vertical velocity. This effect of surface waves is only present in the shallow water regime, and can also affect glider depth measurements. It arises from an incomplete cancellation of the wave-induced pressure perturbation with the hydrostatic component due to vertical glider displacements, whereas for deep-water waves this cancellation is complete.
CITATION STYLE
Merckelbach, L. M., & Carpenter, J. R. (2021). Ocean glider flight in the presence of surface waves. Journal of Atmospheric and Oceanic Technology. https://doi.org/10.1175/jtech-d-20-0206.1
Mendeley helps you to discover research relevant for your work.