We take another approach to Hitchin's strategy of computing the cohomology of moduli spaces of Higgs bundles by localization with respect to the circle action. Our computation is done in the dimensional completion of the Grothendieck ring of varieties and starts by describing the classes of moduli stacks of chains rather than their coarse moduli spaces. As an application we show that the n-torsion of the Jacobian acts trivially on the middledimensional cohomology of the moduli space of twisted SLn-Higgs bundles of degree coprime to n and we give an explicit formula for the motive of the moduli space of Higgs bundles of rank 4 and odd degree. This provides new evidence for a conjecture of Hausel and Rodŕiguez-Villegas. Along the way we find explicit recursion formulas for the motives of several types of moduli spaces of stable chains.
CITATION STYLE
García-Prada, O., Heinloth, J., & Schmitt, A. (2014). On the motives of moduli of chains and Higgs bundles. Journal of the European Mathematical Society, 16(12), 2617–2668. https://doi.org/10.4171/JEMS/494
Mendeley helps you to discover research relevant for your work.