Crackles are discontinuous, non-stationary respiratory sounds and can be characterized by their duration and frequency. In the literature, many techniques of filtering, feature extraction, and classification were presented. Although the discrete wavelet transform (DWT) is a well-known tool in this area, issues like signal border extension, mother-wavelet selection, and its subbands were not properly discussed. Methods: In this work, 30 different mother-wavelets 8 subbands were assessed, and 9 border extension modes were evaluated. The evaluations were done based on the energy representation of the crackle considering the mother-wavelet and the border extension, allowing a reduction of not representative subbands. Results: Tests revealed that the border extension mode considered during the DWT affects crackle characterization, whereas SP1 (Smooth-Padding of order 1) and ASYMW (Antisymmetric-Padding (whole-point)) modes shall not be used. After DWT, only 3 subbands (D3, D4, and D5) were needed to characterize crackles. Finally, from the group of mother-wavelets tested, Daubechies 7 and Symlet 7 were found to be the most adequate for crackle characterization. Discussion: DWT can be used to characterize crackles when proper border extension mode, mother-wavelet, and subbands are taken into account.
CITATION STYLE
Quandt, V. I., Pacola, E. R., Pichorim, S. F., Gamba, H. R., & Sovierzoski, M. A. (2015). Pulmonary crackle characterization: Approaches in the use of discrete wavelet transform regarding border effect, mother-wavelet selection, and subband reduction. Revista Brasileira de Engenharia Biomedica, 31(2), 148–159. https://doi.org/10.1590/2446-4740.0639
Mendeley helps you to discover research relevant for your work.