Chaperonin GroEL is a complex oligomeric heat shock protein (Hsp60) assisting the correct folding and assembly of other proteins in the cell. An intriguing question is how GroEL folds itself. According to the literature, GroEL reassembly is dependent on chaperonin ligands and solvent composition. Here we demonstrate dependence of GroEL reassembly efficiency on concentrations of the essential factors (Mg2+, ADP, ATP, GroES, ammonium sulfate, NaCl and glycerol). Besides, kinetics of GroEL oligomerization in various conditions was monitored by the light scattering technique and proved to be two-exponential, which suggested accumulation of a certain oligomeric intermediate. This intermediate was resolved as a heptamer by nondenaturing blue electrophoresis of GroEL monomers during their assembly in the presence of both Mg-ATP and co-chaperonin GroES. Presumably, this intermediate heptamer plays a key role in formation of the GroEL tetradecameric particle. The role of co-chaperonin GroES (Hsp10) in GroEL assembly is also discussed.
CITATION STYLE
Ryabova, N., Marchenkov, V., Kotova, N., & Semisotnov, G. (2014). Chaperonin GroEL reassembly: an effect of protein ligands and solvent composition. Biomolecules, 4(2), 458–473. https://doi.org/10.3390/biom4020458
Mendeley helps you to discover research relevant for your work.