Genotypic variation of the response to cadmium toxicity in Pisum sativum L.

372Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work evaluates the (cor-)relations between selected biochemical responses to toxic Cd and the degree of Cd sensitivity in a set of pea genotypes. Ten genotypes were analysed that differ in their growth response to Cd when expressed as root or shoot tolerance indices (TIs). Concentrations of non-protein thiols (NPTs) and malondialdehyde (MDA), activity of chitinase, peroxidase (POX), and catalase significantly increased in all pea genotypes treated with Cd. Cd-sensitivity of genotypes was correlated with relative increases in MDA concentration as well as activities of chitinase and POX, suggesting similar Cd stress effects. Activities of ascorbate peroxidase (APX) decreased, but concentrations of glutathione (GSH) increased in the less Cd-sensitive genotypes. Differences in root and leaf contents of Cd revealed no correlation with TI, metabolic parameters, and enzyme activities in Cd-treated plants, respectively, except that shoot Cd concentration positively correlated with shoot chitinase activity. Toxic Cd levels inhibited uptake of nutrient elements such as P, K, S, Ca, Zn, Mn, and B by plants in an organ- and genotype-specific manner. Cd-sensitivity was significantly correlated with decreased root Zn concentrations. The results show both similarities, as well as distinct features, in Cd toxicity expression in genotypes of one species, suggesting that independent and multi-factorial reactions modulate Cd sensitivity on the low-tolerance level of plants. The study illustrates the biochemical basis of earlier detected genotypic variation in Cd response.

Cite

CITATION STYLE

APA

Metwally, A., Safronova, V. I., Belimov, A. A., & Dietz, K. J. (2005). Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany, 56(409), 167–178. https://doi.org/10.1093/jxb/eri017

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free