Many cochlear implant (CI) users achieve excellent speech understanding in acoustically quiet conditions but most perform poorly in the presence of background noise. An important contributor to this poor speech-in-noise performance is the limited transmission of low-frequency sound information through CIs. Recent work has suggested that tactile presentation of this low-frequency sound information could be used to improve speech-in-noise performance for CI users. Building on this work, we investigated whether vibro-tactile stimulation can improve speech intelligibility in multi-talker noise. The signal used for tactile stimulation was derived from the speech-in-noise using a computationally inexpensive algorithm. Eight normal-hearing participants listened to CI simulated speech-in-noise both with and without concurrent tactile stimulation of their fingertip. Participants' speech recognition performance was assessed before and after a training regime, which took place over 3 consecutive days and totaled around 30 min of exposure to CI-simulated speech-in-noise with concurrent tactile stimulation. Tactile stimulation was found to improve the intelligibility of speech in multi-talker noise, and this improvement was found to increase in size after training. Presentation of such tactile stimulation could be achieved by a compact, portable device and offer an inexpensive and noninvasive means for improving speech-in-noise performance in CI users.
CITATION STYLE
Fletcher, M. D., Mills, S. R., & Goehring, T. (2018). Vibro-Tactile Enhancement of Speech Intelligibility in Multi-talker Noise for Simulated Cochlear Implant Listening. Trends in Hearing, 22. https://doi.org/10.1177/2331216518797838
Mendeley helps you to discover research relevant for your work.