The oncogenic transcription factor AP-1 (activator protein-1) is required for tumor promotion and progression. Identification of novel and specific AP-1 inhibitors would be beneficial for cancer prevention and therapy. The authors have developed a high-throughput assay to screen synthetic and natural product libraries for noncytotoxic inhibitors of mitogen-activated AP-1 activity. The cell-based high-throughput screen is conducted in a 384-well format using a fluorescent resonance energy transfer (FRET) substrate to quantify the activity of a β-lactamase reporter under the control of an AP-1-dependent promoter. The ratiometric FRET readout makes this assay extremely robust and reproducible, particularly for use with natural product extracts. To eliminate false positives due to cell killing, a cytotoxicity assay was incorporated. The AP-1 β-lactamase reporter was validated with inhibitors of kinases located upstream of AP-1 and with known natural product inhibitors of AP-1 (nordihydroguaiaretic acid and curcumin). The assay was able to identify other known AP-1 inhibitors and protein kinase C modulators, as well as a number of chemically diverse compounds with unknown mechanisms of action from natural products libraries. Application to natural product extracts identified hits from a range of taxonomic groups. Screening of synthetic compounds and natural products should identify novel AP-1 inhibitors that may be useful in the prevention and treatment of cancers. © 2007 Society for Biomolecular Sciences.
CITATION STYLE
Ruocco, K. M., Goncharova, E. I., Young, M. R., Colburn, N. H., McMahon, J. B., & Henrich, C. J. (2007). A high-throughput cell-based assay to identify specific inhibitors of transcription factor AP-1. Journal of Biomolecular Screening, 12(1), 133–139. https://doi.org/10.1177/1087057106296686
Mendeley helps you to discover research relevant for your work.