Bi-exponential magnetic resonance signal model for partial volume computation

6Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Accurate quantification of small structures in magnetic resonance (MR) images is often limited by partial volume (PV) effects which arise when more than one tissue type is present in a voxel. PV may be critical when dealing with changes in brain anatomy as the considered structures such as gray matter (GM) are of similar size as the MR spatial resolution. To overcome the limitations imposed by PV effects and achieve subvoxel accuracy different methods have been proposed. Here, we describe a method to compute PV by modeling the MR signal with a biexponential linear combination representing the contribution of at most two tissues in each voxel. In a first step, we estimated the parameters (T1, T2 and proton density) per tissue. Then, based on the bi-exponential formulation one can retrieve fractional contents by solving a linear system of two equations with two unknowns, namely tissue magnetizations. Preliminary tests were conducted on images acquired on a specially designed physical phantom for the study of PV effects. Further, the model was tested on BrainWeb simulated brain images to estimate GM and white matter (WM) PV effects. Root mean squared error was computed between the BrainWeb ground truth and the obtained GM and WM PV maps. The proposed method outperformed traditionally used methods by 33% and 34% in GM and WM, respectively.

Cite

CITATION STYLE

APA

Duché, Q., Acosta, O., Gambarota, G., Merlet, I., Salvado, O., & Saint-Jalmes, H. (2012). Bi-exponential magnetic resonance signal model for partial volume computation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7510 LNCS, pp. 231–238). Springer Verlag. https://doi.org/10.1007/978-3-642-33415-3_29

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free