This study aimed to investigate whether low molecular fish collagen peptide (FC) from Oreochromis niloticus had protective effects on skin of photoaging mimic models. We observed that FC supplementation improved antioxidant enzymes activities and regulated the pro-inflammatory cytokines [e.g., tumor necrosis factor-α, interleukin (IL)-1β, and IL-6] by reducing the protein expressions of pro-inflammatory factors IкBα, p65, and cyclooxygenase-2 in ultraviolet-B (UV-B) irradiated in vitro and in vivo. Furthermore, FC increased hyaluronic acid, sphingomyelin, and skin hydration by regulating the mRNA expression of hyaluronic acid synthases 1∼3, serine palmitoyltransferase 1, delta 4-desaturase, sphingolipid 1, and protein expressions of ceramide synthase 4, matrix metalloproteinase (MMP)-1, -2, and -9. In UV-B irradiated in vitro and in vivo, FC down-regulated the protein expression of the c-Jun N-terminal kinase, c-Fos, c-Jun, and MMP pathways and up-regulated that of the transforming growth factor-β receptor I, collagen type I, procollagen type I, and small mothers against decapentaplegic homolog pathways. Our results suggest that FC can be effective against UV-B induced skin photoaging by improving skin dryness and wrinkle formation through antioxidant and anti-inflammatory properties.
CITATION STYLE
Cho, W., Park, J., Lee, M., Park, S. H., Jung, J., Kim, J., … Kim, J. (2023). Gly-Pro-Val-Gly-Pro-Ser Peptide Fish Collagen Improves Skin Moisture and Wrinkles with Ameliorated the Oxidative Stress and Pro-inflammatory Factors in Skin Photoaging Mimic Models. Preventive Nutrition and Food Science, 28(1), 50–60. https://doi.org/10.3746/pnf.2023.28.1.50
Mendeley helps you to discover research relevant for your work.