Inhibition of glycogen synthesis by increased lipid availability is associated with subcellular redistribution of glycogen synthase

19Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Increased lipid availability is associated with diminished insulin-stimulated glucose uptake and glycogen synthesis in muscle, but it is not clear whether alterations in glycogen synthase activity itself play a direct role. Because intracellular localization of this enzyme is involved in its regulation, we investigated whether fat oversupply causes an inhibitory redistribution. We examined the recovery of glycogen synthase in subcellular fractions from muscle of insulin-resistant, fat-fed rats and chow-fed controls, either maintained in the basal state or after a euglycaemic-hyperinsulinaemic clamp. Although glycogen synthase protein and activity were mostly recovered in an insoluble fraction, insulin caused translocation of activity from the smaller soluble pool to the insoluble fraction. Fat-feeding, which led to a reduction in glycogen synthesis during the clamp, was associated with a depletion in the soluble pool, consistent with an important role for this component. A similar depletion was also observed in cytosolic fractions of muscles from obese db/db mice, another model of lipid-induced insulin resistance. To investigate this in more detail, we employed lipid-pretreated L6 myotubes, which exhibited a reduction in insulin-stimulated glycogen synthesis independently of alterations in glucose flux or insulin signalling through protein kinase B. In control cells, insulin caused redistribution of a minor cytosolic pool of glycogen synthase to an insoluble fraction, which was again forestalled by lipid pretreatment. Glycogen synthase recovered in the insoluble fraction from pretreated cells exhibited a low fractional velocity that was not increased in response to insulin. Our results suggest that the initial localization of glycogen synthase in a soluble pool plays an important role in glycogen synthesis, and that its sequestration in an insulin-resistant insoluble pool may explain in part the reduced glycogen synthesis caused by lipid oversupply. © 2006 Society for Endocrinology.

Cite

CITATION STYLE

APA

Taylor, A. J., Ye, J. M., & Schmitz-Peiffer, C. (2006). Inhibition of glycogen synthesis by increased lipid availability is associated with subcellular redistribution of glycogen synthase. Journal of Endocrinology, 188(1), 11–23. https://doi.org/10.1677/joe.1.06381

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free