Volcanoes Erupt Stressed Quartz Crystals

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X-ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal-bearing glass during ascent.

Cite

CITATION STYLE

APA

Befus, K. S., Manga, M., Stan, C., & Tamura, N. (2019). Volcanoes Erupt Stressed Quartz Crystals. Geophysical Research Letters, 46(15), 8791–8800. https://doi.org/10.1029/2019GL083619

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free