An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains

9Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

The RsbQ α/β hydrolase and RsbP serine phosphatase form a signaling pair required to activate the general stress factor σ B of Bacillus subtilis in response to energy limitation. RsbP has a predicted N-terminal Per-ARNT-Sim (PAS) domain, a central coiled-coil, and a C-terminal protein phosphatase M (PPM) domain. Previous studies support a model in which RsbQ provides an activity needed for PAS to regulate the phosphatase domain via the coiled-coil. RsbQ and the PAS domain (RsbP-PAS) therefore appear to form a sensory module. Here we test this hypothesis using bioinformatic and genetic analysis. We found 45 RsbQ and RsbP-PAS homologues encoded by adjacent genes in diverse bacteria, with PAS and a predicted coiled-coil fused to one of three output domains: PPM phosphatase (Gram positive bacteria), histidine protein kinase (Gram negative bacteria), and diguanylate cyclase (both lineages). Multiple alignment of the RsbP-PAS homologues suggested nine residues that distinguish the class. Alanine substitutions at four of these conferred a null phenotype in B. subtilis, indicating their functional importance. The F55A null substitution lay in the Fα helix of an RsbP-PAS model. F55A inhibited interaction of RsbP with RsbQ in yeast two-hybrid and pull-down assays but did not significantly affect interaction of RsbP with itself. We propose that RsbQ directly contacts the PAS domains of an RsbP oligomer to provide the activating signal, which is propagated to the phosphatase domains via the coiled-coil. A similar mechanism would allow the RsbQ-PAS module to convey a common input signal to structurally diverse output domains, controlling a variety of physiological responses. © 2011 Nadezhdinff et al.

Cite

CITATION STYLE

APA

Nadezhdin, E. V., Brody, M. S., & Price, C. W. (2011). An α/β hydrolase and associated Per-ARNT-Sim domain comprise a bipartite sensing module coupled with diverse output domains. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0025418

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free