Background: High-throughput methods for biological measurements generate vast amounts of quantitative data, which necessitate the development of advanced approaches to data analysis to help understand the underlying mechanisms and networks. Reconstruction of biological networks from measured data of different components is a significant challenge in systems biology.Results: We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7 macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies between interacting components. Using the topology of the network derived, we develop a data-driven parsimonious input-output model of the phosphoprotein-cytokine network.Conclusions: We demonstrate the applicability of our information theoretic approach to reconstruction of biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the known signaling components involved in cytokine release but also predicts new signaling components involved in the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage activation during the inflammation process. © 2014 Farhangmehr et al.; licensee BioMed Central Ltd.
CITATION STYLE
Farhangmehr, F., Maurya, M. R., Tartakovsky, D. M., & Subramaniam, S. (2014). Information theoretic approach to complex biological network reconstruction: Application to cytokine release in RAW 264.7 macrophages. BMC Systems Biology, 8(1). https://doi.org/10.1186/1752-0509-8-77
Mendeley helps you to discover research relevant for your work.