When working with a data set, machine learning engineers might train a model but find that the results are not as good as they need. To get better results, they can try to improve the model or collect more data, but there is another avenue: feature engineering. The feature engineering process can help improve results by modifying the data’s features to better capture the nature of the problem. This process is partly an art and partly a palette of tricks and recipes. This practical guide to feature engineering is an essential addition to any data scientist’s or machine learning engineer’s toolbox, providing new ideas on how to improve the performance of a machine learning solution. Beginning with the basic concepts and techniques of feature engineering, the text builds up to a unique cross-domain approach that spans data on graphs, texts, time series and images, with fully worked-out case studies. Key topics include binning, out-of-fold estimation, feature selection, dimensionality reduction and encoding variable-length data. The full source code for the case studies is available on a companion website as Python Jupyter notebooks.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Duboue, P. (2020). The Art of Feature Engineering: Essentials for Machine Learning. The Art of Feature Engineering: Essentials for Machine Learning (pp. 1–274). Cambridge University Press. https://doi.org/10.1017/9781108671682