Predicting the Temperature-Dependent Long-Term Creep Mechanical Response of Silica Sand-Textured Geomembrane Interfaces Based on Physical Tests and Machine Learning Techniques

1Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Preciously assessing the creep mechanical response of sand–geomembrane interfaces is vital for the design of relevant engineering applications, which is inevitable to be influenced by temperature and stress statuses. In this paper, based on the self-developed temperature-controlled large interface shear apparatus, a series of long-term creep shear tests on textured geomembrane–silica sand interfaces in different temperatures, normal pressure, and creep shear pressure were conducted, and a database compiled from the physical creep shear test results is constructed. By adopting the database, three disparate machine learning algorithms of the Back Propagation Artificial Neural Network (BPANN), the Support Vector Machine (SVM) and the Extreme Learning Machine (ELM) were adopted to assess the long-term creep mechanical properties of sand–geomembrane interfaces while also considering the influence of temperature. Then, the forecasting results of the different algorithms was compared and analyzed. Furthermore, by using the optimal machine learning model, sensitivity analysis was carried out. The research indicated that the BPANN model has the best forecasting performance according to the statistics criteria of the Root-Mean-Square Error, the Correlation Coefficient, Wilmot’s Index of Agreement, and the Mean Absolute Percentage Error among the developed models. Temperature is the most important influence factor on the creep interface mechanical properties, followed with time. The research findings can support the operating safety of the related engineering facilities installed with the geomembrane.

Cite

CITATION STYLE

APA

Chao, Z., Wang, H., Hu, H., Ding, T., & Zhang, Y. (2023). Predicting the Temperature-Dependent Long-Term Creep Mechanical Response of Silica Sand-Textured Geomembrane Interfaces Based on Physical Tests and Machine Learning Techniques. Materials, 16(18). https://doi.org/10.3390/ma16186144

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free