Sarcolemmal ATP-sensitive K+ (KATP) channels are abundant in cardiac myocytes where they couple the cellular metabolic state with membrane excitability. Structurally, these channels are composed of Kir6.2, a pore-forming subunit, SUR2A, a regulatory subunit, and at least four accessory proteins. The activation of KATP channels occurs during ischaemia to promote cardiac viability under this adverse condition. Age-dependent changes in the myocardial susceptibility to ischaemia have been reported in experimental animals as well as in humans. Recent research has demonstrated that ageing is associated with a decrease in the number of cardiac sarcolemmal KATP channels in hearts from females, but not males. This alteration is likely to be due to an age-dependent decrease in the concentration of circulating estrogens. In the heart, SUR2A is the least expressed protein of all KATP channel-forming proteins. The consequence of this phenomenon is that the level of SUR2A is the main factor controlling the number of sarcolemmal KATP channels. Estrogens specifically up-regulate SUR2A and govern the number of sarcolemmal KATP channels, and this may explain the effect of decreasing estrogen levels on the heart. An age-dependent decrease in the number of sarcolemmal KATP channels generates a cardiac phenotype more sensitive to ischaemia, which seems to be responsible for the ageing-associated decrease in myocardial tolerance to stress that occurs in elderly women.
CITATION STYLE
Jovanović, A. (2010). Ageing, gender and cardiac sarcolemmal KATP channels. Journal of Pharmacy and Pharmacology, 58(12), 1585–1589. https://doi.org/10.1211/jpp.58.12.0004
Mendeley helps you to discover research relevant for your work.