Optimization of intrinsic ZnO thickness in Cu(In,Ga)Se2-based thin film solar cells

37Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

The typical structure of high efficiency Cu(InGa)Se2 (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (RSH), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall RSH (130-371 Ω cm2) than that of the device with a three-stage co-evaporated CIGS absorber (530-1127 Ω cm2) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%).

Cite

CITATION STYLE

APA

Alhammadi, S., Park, H., & Kim, W. K. (2019). Optimization of intrinsic ZnO thickness in Cu(In,Ga)Se2-based thin film solar cells. Materials, 12(9). https://doi.org/10.3390/ma12091365

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free