Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation

39Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Nanotechnology developed rapidly in cellular diagnosis and treatment, the endocytic system was an important pathway for targeting cell. In the research of developing macrophages as drug carriers or important therapeutic targets, an interesting phenomenon, internalized nanoparticles induced to form binucleated macrophages, was found although the particles dose did not cause obvious cytotoxicity. Results: Under 25 μg/ml, internalized 30 nm polystyrene beads(30 nm Ps nanoparticles) induced the formation of binucleated macrophages when they entered into endosomes via the endocytic pathway. These internalized 30 nm Ps nanoparticles (25 μg/ml) and 30 nm Au-NPs (1.575 ng/ml) also induced markedly rise of binucleated cell rates in A549, HePG-2 and HCT116. This endosome, aggregated anionic polystyrene particles were dispersed and bound on inner membrane, was induced to form a large vesicle-like structure (LVLS). This phenomenon blocked transport of the particles from the endosome to lysosome and therefore restricted endosomal membrane trafficking through the transport vesicles. Early endosome antigen-1 and Ras-related protein-11 expressions were upregulated; however, the localized distributions of these pivotal proteins were altered. We hypothesized that these LVLS were held by the internalized and dispersed particles decreasing the amount of cell membrane available to support the completion of cytokinesis. In addition, altered distributions of pivotal proteins prevented transfer vesicles from fusion and hampered the separation of daughter cells. Conclusions: 30 nm Ps nanoparticles induced formation of LVLS, blocked the vesicle transport in endocytic system and the distributions of regular proteins required in cytokinesis which led to binucleated cells of macrophages. Markedly raised binucleated rate was also observed in human lung adenocarcinoma epithelial cell line(A549), human hepatoma cell line(HePG-2) and human colorectal cancer cell line(HCT116) treated by 30 nm Ps nanoparticles and Au-NPs.

Cite

CITATION STYLE

APA

Xia, L., Gu, W., Zhang, M., Chang, Y. N., Chen, K., Bai, X., … Xing, G. (2016). Endocytosed nanoparticles hold endosomes and stimulate binucleated cells formation. Particle and Fibre Toxicology, 13(1). https://doi.org/10.1186/s12989-016-0173-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free