Many molecular components in human milk (HM), such as human milk oligosaccharides (HMOs), assist in the healthy development of infants. It has been hypothesized that the functional benefits of HM may be highly dependent on the abundance and individual fine structures of contained HMOs and that distinctive HM groups can be defined by their HMO profiles. However, the structural diversity and abundances of individual HMOs may also vary between milk donors and at different stages of lactations. Improvements in efficiency and selectivity of quantitative HMO analysis are essential to further expand our understanding about the impact of HMO variations on healthy early life development. Hence, we applied here a targeted, highly selective, and semi-quantitative LC-ESI-MS2 approach by analyzing 2 × 30 mature human milk samples collected at 6 and 16 weeks post-partum. The analytical approach covered the most abundant HMOs up to hexasaccharides and, for the first time, also assigned blood group A and B tetrasaccharides. Principal component analysis (PCA) was employed and allowed for automatic grouping and assignment of human milk samples to four human milk groups which are related to the maternal Secretor (Se) and Lewis (Le) genotypes. We found that HMO diversity varied significantly between these four HM groups. Variations were driven by HMOs being either dependent or independent of maternal genetic Se and Le status. We found preliminary evidence for an additional HM subgroup within the Se- and Le-positive HM group I. Furthermore, the abundances of 6 distinct HMO structures (including 6′-SL and 3-FL) changed significantly with progression of lactation. [Figure not available: see fulltext.].
CITATION STYLE
Mank, M., Hauner, H., Heck, A. J. R., & Stahl, B. (2020). Targeted LC-ESI-MS2 characterization of human milk oligosaccharide diversity at 6 to 16 weeks post-partum reveals clear staging effects and distinctive milk groups. Analytical and Bioanalytical Chemistry, 412(25), 6887–6907. https://doi.org/10.1007/s00216-020-02819-x
Mendeley helps you to discover research relevant for your work.