Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Currently, natural polymer materials with bactericidal properties are extremely popular. Unfortunately, although the biopolymer material itself is biodegradable, its enrichment with bactericidal compounds may affect the efficiency of biodegradation by natural soil microflora. Therefore, the primary objective of this study was to evaluate the utility of fungi belonging to the genus Trichoderma in facilitating the degradation of chitosan film modified with cinnamic acid and ellagic acid in the soil environment. Only two strains (T.07 and T.14) used chitosan films as a source of carbon and nitrogen. However, their respiratory activity decreased with the addition of tested phenolic acids, especially cinnamic acid. Addition of Trichoderma isolates to the soil increased oxygen consumption during the biodegradation process compared with native microorganisms, especially after application of the T.07 and T.14 consortium. Isolates T.07 and T.14 showed high lipolytic (55.78 U/h and 62.21 U/h) and chitinase (43.03 U/h and 41.27 U/h) activities. Chitinase activity after incorporation of the materials into the soil was higher for samples enriched with T.07, T.14 and the consortium. The isolates were classified as Trichoderma sp. and Trichoderma koningii. Considering the outcomes derived from our findings, it is our contention that the application of Trichoderma isolates holds promise for expediting the degradation process of chitosan materials containing bactericidal compounds.

Cite

CITATION STYLE

APA

Swiontek Brzezinska, M., Shinde, A. H., Kaczmarek-Szczepańska, B., Jankiewicz, U., Urbaniak, J., Boczkowski, S., … Michalska-Sionkowska, M. (2024). Biodegradability Study of Modified Chitosan Films with Cinnamic Acid and Ellagic Acid in Soil. Polymers, 16(5). https://doi.org/10.3390/polym16050574

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free