Early diabetes-induced biochemical changes in the retina: Comparison of rat and mouse models

85Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aims/hypothesis: Recently, various transgenic and knock-out mouse models have become available for studying the pathogenesis of diabetic retinopathy. At the same time, diabetes-induced retinal changes in the wild-type mice remain poorly characterised. The present study compared retinal biochemical changes in rats and mice with similar (6-week) durations of streptozotocin-induced diabetes. Materials and methods: The experiments were performed on Wistar rats and C57Bl6/J mice. Retinal glucose, sorbitol, fructose, lactate, pyruvate, glutamate, α-ketoglutarate and ammonia were measured spectrofluorometrically by enzymatic methods. Vascular endothelial growth factor (VEGF) protein was assessed by ELISA, and poly(ADP-ribosyl)ation by immunohistochemistry and western blot analysis. Free mitochondrial and cytosolic NAD+/NADH ratios were calculated from the glutamate and lactate dehydrogenase systems. Results: Retinal glucose concentrations were similarly increased in diabetic rats and mice, vs controls. Diabetic rats manifested ∼26- and 5-fold accumulation of retinal sorbitol and fructose, respectively, whereas elevation of both metabolites in diabetic mice was quite modest. Correspondingly, diabetic rats had (1) increased retinal malondialdehyde plus 4-hydroxyalkenal concentrations, (2) reduced superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase and glutathione transferase activities, (3) slightly increased poly(ADP-ribose) immunoreactivity and poly(ADP-ribosyl)ated protein abundance, and (4) VEGF protein overexpression. Diabetic mice lacked these changes. SOD activity was 21-fold higher in murine than in rat retinas (the difference increased to 54-fold under diabetic conditions), whereas other antioxidative enzyme activities were 3- to 10-fold lower. With the exception of catalase, the key antioxidant defence enzyme activities were increased, rather than reduced, in diabetic mice. Diabetic rats had decreased free mitochondrial and cytosolic NAD+/NADH ratios, consistent with retinal hypoxia, whereas both ratios remained in the normal range in diabetic mice. Conclusions/interpretation: Mice with short-term streptozotocin-induced diabetes lack many biochemical changes that are clearly manifest in the retina of streptozotocin-diabetic rats. This should be considered when selecting animal models for studying early retinal pathology associated with diabetes. © Springer-Verlag 2006.

Cite

CITATION STYLE

APA

Obrosova, I. G., Drel, V. R., Kumagai, A. K., Szábo, C., Pacher, P., & Stevens, M. J. (2006). Early diabetes-induced biochemical changes in the retina: Comparison of rat and mouse models. Diabetologia, 49(10), 2525–2533. https://doi.org/10.1007/s00125-006-0356-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free