GeneWalk identifies relevant gene functions for a biological context using network representation learning

23Citations
Citations of this article
220Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A bottleneck in high-throughput functional genomics experiments is identifying the most important genes and their relevant functions from a list of gene hits. Gene Ontology (GO) enrichment methods provide insight at the gene set level. Here, we introduce GeneWalk (github.com/churchmanlab/genewalk) that identifies individual genes and their relevant functions critical for the experimental setting under examination. After the automatic assembly of an experiment-specific gene regulatory network, GeneWalk uses representation learning to quantify the similarity between vector representations of each gene and its GO annotations, yielding annotation significance scores that reflect the experimental context. By performing gene- and condition-specific functional analysis, GeneWalk converts a list of genes into data-driven hypotheses.

Cite

CITATION STYLE

APA

Ietswaart, R., Gyori, B. M., Bachman, J. A., Sorger, P. K., & Churchman, L. S. (2021). GeneWalk identifies relevant gene functions for a biological context using network representation learning. Genome Biology, 22(1). https://doi.org/10.1186/s13059-021-02264-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free