In the immediate aftermath of a disaster, relief agencies perform needs assessment operations to investigate the effects of the disaster and understand the needs of the affected communities. Since assessments must be performed quickly, it may not be possible to visit each site in the affected region. In practice, sites to be visited during the assessment period are selected considering the characteristics of the target communities. In this study, we address site selection and routing decisions of the rapid needs assessment teams that aim to evaluate the post-disaster conditions of a diverse set of community groups with different characteristics (e.g., ethnicity, income level, etc.) within a limited period of time. In particular, we study the Selective Assessment Routing Problem (SARP) that determines sites to be visited and the order of site visits for each team while ensuring sufficient coverage of the given set of characteristics. We present a mathematical model and greedy heuristics for the SARP. We perform numerical analysis to evaluate the performance of the greedy heuristics and show that the heuristic version that balances the tradeoff between coverage and travel times provides reasonable solutions for realistic problem instances.
CITATION STYLE
Balcik, B. (2016). Selective routing for post-disaster needs assessments. In Springer Proceedings in Mathematics and Statistics (Vol. 185, pp. 15–36). Springer New York LLC. https://doi.org/10.1007/978-3-319-43709-5_2
Mendeley helps you to discover research relevant for your work.