Symbolic plans as high-level instructions for reinforcement learning

54Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

Reinforcement learning (RL) agents seek to maximize the cumulative reward obtained when interacting with their environment. Users define tasks or goals for RL agents by designing specialized reward functions such that maximization aligns with task satisfaction. This work explores the use of high-level symbolic action models as a framework for defining final-state goal tasks and automatically producing their corresponding reward functions. We also show how automated planning can be used to synthesize high-level plans that can guide hierarchical RL (HRL) techniques towards efficiently learning adequate policies. We provide a formal characterization of taskable RL environments and describe sufficient conditions that guarantee we can satisfy various notions of optimality (e.g., minimize total cost, maximize probability of reaching the goal). In addition, we do an empirical evaluation that shows that our approach converges to near-optimal solutions faster than standard RL and HRL methods and that it provides an effective framework for transferring learned skills across multiple tasks in a given environment.

Cite

CITATION STYLE

APA

Illanes, L., Yan, X., Icarte, R. T., & McIlraith, S. A. (2020). Symbolic plans as high-level instructions for reinforcement learning. In Proceedings International Conference on Automated Planning and Scheduling, ICAPS (Vol. 30, pp. 540–550). AAAI press. https://doi.org/10.1609/icaps.v30i1.6750

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free