Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1

53Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galβ1-4GlcNAc) but not lacto-N-biose (Galβ1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn2+, and an acceptor substrate analogue N-acetyllactosamine (Galβ1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an α/β protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp195-Asp196-Asp197). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val320 and Asn 321, which are located on the C-terminal long loop from a neighboring molecule, and Phe245 contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.

Cite

CITATION STYLE

APA

Kakuda, S., Shiba, T., Ishiguro, M., Tagawa, H., Oka, S., Kajihara, Y., … Kato, R. (2004). Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. Journal of Biological Chemistry, 279(21), 22693–22703. https://doi.org/10.1074/jbc.M400622200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free