Order of diagenetic events controls evolution of porosity and permeability in carbonates

17Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The properties of carbonate rocks are often the result of multiple, diagenetic events that involve phases of cementation (porosity occlusion) and dissolution (porosity enhancement). This study tests the hypothesis that the order of these events is a major control on final porosity and permeability. A three-dimensional synthetic model of grainstone is used to quantify trends that show the effect of early cementation, non-fabric selective dissolution, and then a second-generation of (post-dissolution) cement. Models are 3 mm3 with a resolution of 10 μm. Six simple paragenetic sequences are modelled from an identical starting sediment (without accounting for compaction) where the same diagenetic events are placed in different sequences, allowing for quantification of relative changes in the resultant porosity and permeability for each diagenetic event, the trajectory through time, as well as for each final rock. All modelled paragenetic sequences result in reductions in porosity and permeability, but the order of diagenetic events controls the trajectory and final rock properties. Differences in the order of early cement precipitation alone produce variable final values, but all follow the porosity–permeability relationship as expressed by the Kozeny-Carman equation. However, final values for the sequences which include a phase of dissolution fall on a new curve, which departs from that predicted by the Kozeny-Carman relationship. This allows an alternative form of porosity–permeability relationship to be proposed: κ = 2280ϕ–30,400, where ϕ is porosity (%) and κ is permeability (mD). Hence while the Kozeny-Carman relationship predicts porosity–permeability changes that occur with cementation, it is unable to capture accurately changes within the pore network as a result of dissolution. Although the results may be dependent on the properties of the initial carbonate sediment and simplified diagenetic scenarios, it is suggested that this new porosity–permeability relationship may capture some generalized behaviour, which can be tested by modelling further sediment types and diagenetic scenarios.

Cite

CITATION STYLE

APA

Hosa, A., & Wood, R. (2020). Order of diagenetic events controls evolution of porosity and permeability in carbonates. Sedimentology, 67(6), 3042–3054. https://doi.org/10.1111/sed.12733

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free