Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives

70Citations
Citations of this article
135Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Conversion of the abundant lignocellulosic biomass into ethanol is an environmentally sustainable solution to the energy crisis. Fermentation of lignocellulosic hydrolysates by Saccharomyces cerevisiae is not cost-effective yet as substantial amounts of xylose in the hydrolysates cannot be utilized by native S. cerevisiae strains. Extensive studies including both metabolic and evolutionary engineering have been carried out to develop an efficient xylose-fermenting S. cerevisiae strain, yet the ethanol yield and productivity from xylose fermentation of the best one are still far below expectation. This review compares the engineering approaches and resulted anaerobic xylose fermentation performance of recently reported xylose-utilizing S. cerevisiae strains, with the aim to understand the intrinsic reason for their low xylose fermentation capabilities. These comparative analyses revealed that some of the current engineering targets and the so-called "hot issues" might be overrated. Our opinions on the underrated parts and future efforts in this field are also presented. Overall, this review serves as a comprehensive reference to understanding xylose fermentation by S. cerevisiae. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Cite

CITATION STYLE

APA

Cai, Z., Zhang, B., & Li, Y. (2012, January). Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: Reflections and perspectives. Biotechnology Journal. https://doi.org/10.1002/biot.201100053

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free