Evaluation of the joint based on different surface conditions for aluminum-polyamide laser welding

  • Amne Elahi M
  • Koch M
  • Plapper P
4Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Laser welding is one of the most promising joining techniques to realize hybrid joints between metals and polymers in order to achieve weight reduction and functionalization of the parts. The surface treatment of the metal has a decisive effect on the joint quality and thus on the mechanical properties. In the present study, different mechanical and laser-based surface treatments have been investigated to develop diverse surface conditions on aluminum. Abrasive blasting and laser ablation were used to increase the surface roughness, while abrasive polishing and laser polishing were applied to minimize the surface roughness. In contrast to abrasive surface treatments, laser-based ones were implemented to create artificial oxide layers on the aluminum surface. The surface structures of pretreated samples have been studied with scanning electron microscopy and roughness test. The laser welding of pretreated aluminum with polyamide was achieved with the heat conduction joining technique. To enlarge the welding area and control the heat input, spatial and temporal modulations of the laser beam were implemented. Finally, a single lap tensile-shear test, microscopic analysis of fractured surfaces, and welding cross sections were employed to evaluate the joints. Results show that the presence of an artificial aluminum oxide layer and low roughness are essential to achieve a superior joint between aluminum and polyamide (improvement of approximately 58% in the shear load of the joint compared to as-received welded samples). The cross section of the superior joint which is the laser-polished aluminum welded to polyamide is studied with transmission electron microscopy.

Cite

CITATION STYLE

APA

Amne Elahi, M., Koch, M., & Plapper, P. (2021). Evaluation of the joint based on different surface conditions for aluminum-polyamide laser welding. Journal of Laser Applications, 33(1). https://doi.org/10.2351/7.0000326

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free