Elastomeric proteins have evolved independently multiple times through evolution. Produced as monomers, they self-assemble into polymeric structures that impart properties of stretch and recoil. They are composed of an alternating domain architecture of elastomeric domains interspersed with cross-linking elements. While the former provide the elasticity as well as help drive the assembly process, the latter serve to stabilise the polymer. Changes in the number and arrangement of the elastomeric and cross-linking regions have been shown to significantly impact their assembly and mechanical properties. However, to date, such studies are relatively limited. Here we present a theoretical study that examines the impact of domain architecture on polymer assembly and integrity. At the core of this study is a novel simulation environment that uses a model of diffusion limited aggregation to simulate the self-assembly of rod-like particles with alternating domain architectures. Applying the model to different domain architectures, we generate a variety of aggregates which are subsequently analysed by graph-theoretic metrics to predict their structural integrity. Our results show that the relative length and number of elastomeric and cross-linking domains can significantly impact the morphology and structural integrity of the resultant polymeric structure. For example, the most highly connected polymers were those constructed from asymmetric rods consisting of relatively large cross-linking elements interspersed with smaller elastomeric domains. In addition to providing insights into the evolution of elastomeric proteins, simulations such as those presented here may prove valuable for the tuneable design of new molecules that may be exploited as useful biomaterials. © 2012 Song, Parkinson.
CITATION STYLE
Song, H., & Parkinson, J. (2012). Modelling the self-assembly of elastomeric proteins provides insights into the evolution of their domain architectures. PLoS Computational Biology, 8(3). https://doi.org/10.1371/journal.pcbi.1002406
Mendeley helps you to discover research relevant for your work.