An unusual mitotic mechanism in the parasitic protozoan Syndinium sp.

100Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Syndinium and related organisms which parasitize a number of invertebrates have been classified with dinoflagellates on the basis of the morphology of their zoospores. We demonstrate here that with respect to chromosome structure and chemistry as well as nuclear division, they differ fundamentally from free-living dinoflagellates. Alkaline fast green staining indicates the presence of basic proteins in Syndinium chromosomes. Chromatin fibers are about 30 Å thick and do not show the arrangement characteristic of dino-flagellate chromosomes. The four V-shaped chromosomes are permanently attached at their apexes to a specific area of the nuclear membrane through a kinetochore-like trilaminar disk inserted into an opening of the membrane. Microtubules connect the outer dense layer of each kinetochore to the bases of the two centrioles located in a pocket-shaped invagination of the nuclear envelope. During division kinetochores duplicate, and each sister kinetochore becomes attached to a different centriole. As the centrioles move apart, apparently pushed by a bundle of elongating microtubules (central spindle), the daughter chromosomes are passively pulled apart. During the process of elongation of the central spindle, the cytoplasmic groove on the nuclear surface which contains the central spindle sinks into the nuclear space and is transformed into a cylindrical cytoplasmic channel. A constriction in the persisting nuclear envelope leads to the formation of two daughter nuclei. © 1974, Rockefeller University Press., All rights reserved.

Cite

CITATION STYLE

APA

Ris, H., & Kubai, D. F. (1974). An unusual mitotic mechanism in the parasitic protozoan Syndinium sp. Journal of Cell Biology, 60(3), 702–720. https://doi.org/10.1083/jcb.60.3.702

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free