Different sources of copper effect on intestinal epithelial cell: Toxicity, oxidative stress, and metabolism

13Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Copper (Cu) is widely used in the swine industry to improve the growth performance of pigs. However, high doses of copper will induce cell damage and toxicity. The aim of this study was to evaluate toxicity, bioavailability, and effects on metabolic processes of varying copper sources using porcine intestinal epithelial cells (IPEC-J2) as a model. The IPEC-J2 were treated with two doses (30 and 120 µM) of CuSO4, Cu Glycine (Cu-Gly), and Cu proteinate (Cu-Pro) for 10 h, respectively. Cell damage and cellular copper metabolism were measured by the changes in cell viability, copper uptake, oxidative stress biomarkers, and gene/protein expression levels. The results showed that cell viability and ratio of reduced and oxidized glutathione (GSH/GSSG) decreased significantly in all treatment groups; intracellular copper content increased significantly in all treatment groups; total superoxide dismutase (SOD) activity increased significantly in the 120 µM exposed groups; SOD1 protein expression levels were significantly upregulated in 30 µM Cu-Pro, 120 µM Cu-Gly, and 120 µM Cu-Pro treatment groups; intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) content increased significantly in 30 µM treatment groups and 120 µM CuSO4 treatment group. CTR1 and ATP7A gene expression were significantly downregulated in the 120 µM exposed groups. While upregulation of ATOX1 expression was observed in the presence of 120 µM Cu-Gly and Cu-Pro. ASCT2 gene expression was significantly upregulated after 120 µM Cu-Glycine and CuSO4 exposure, and PepT1 gene expression was significantly upregulated after Cu-Pro exposure. In addition, CTR1 protein expression level decreased after 120 µM CuSO4 and Cu-Gly exposure. PepT1 protein expression level was only upregulated after 120 µM Cu-Pro exposure. These findings indicated that extra copper supplementation can induce intestinal epithelial cell injury, and different forms of copper may have differing effects on cell metabolism.

Cite

CITATION STYLE

APA

Li, R., Wen, Y., Lin, G., Meng, C., He, P., & Wang, F. (2020). Different sources of copper effect on intestinal epithelial cell: Toxicity, oxidative stress, and metabolism. Metabolites, 10(1). https://doi.org/10.3390/metabo10010011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free