The molecular pathogenesis of colorectal cancer encompasses the activation of several oncogenic signaling pathways that include the Wnt/β-catenin pathway and the overexpression of high mobility group protein A2 (HMGA2). Resveratrol - the polyphenolic phytoalexin - binds to integrin αvβ3 to induce apoptosis in cancer cells via cyclooxygenase 2 (COX-2) nuclear accumulation and p53-dependent apoptosis. Tetraiodothyroacetic acid (tetrac) is a de-aminated derivative of l-thyroxine (T4), which - in contrast to the parental hormone - impairs cancer cell proliferation. In the current study, we found that tetrac promoted resveratrol-induced anti-proliferation in colon cancer cell lines, in primary cultures of colon cancer cells, and in vivo. The mechanisms implicated in this action involved the downregulation of nuclear β-catenin and HMGA2, which are capable of compromising resveratrol-induced COX-2 nuclear translocation. Silencing of either β-catenin or HMGA2 promoted resveratrol-induced anti-proliferation and COX-2 nuclear accumulation which is essential for integrin αvβ3-mediatedresveratrol- induced apoptosis in cancer cells. Concurrently, tetrac enhanced nuclear abundance of chibby family member 1, the nuclear β-catenin antagonist, which may further compromise the nuclear β-catenin-dependent gene expression and proliferation. Taken together, these results suggest that tetrac targets β-catenin and HMGA2 to promote resveratrol-induced-anti-proliferation in colon cancers, highlighting its potential in anti-cancer combination therapy.
CITATION STYLE
Nana, A. W., Chin, Y. T., Lin, C. Y., Ho, Y., Bennett, J. A., Shih, Y. J., … Davis, P. J. (2018). Tetrac downregulates β-catenin and HMGA2 to promote the effect of resveratrol in colon cancer. Endocrine-Related Cancer, 25(3), 279–293. https://doi.org/10.1530/ERC-17-0450
Mendeley helps you to discover research relevant for your work.