In this article, a novel nano-rod-shaped SAPO-11 molecular sieve (SAPO-11-A-F) with a thickness of ca. 100 nm was successfully fabricated by the in situ seed-induced steam-assisted method using the cationic surfactant cetyltrimethylammonium bromide (CTAB) as a mesoporous template and a nonionic copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), F127, as the crystal growth inhibitor. The fabricated nano-rod-shaped SAPO-11-A-F possessed nanocrystalline size, a hierarchical porous structure, and enhanced acidic sites. The added CTAB was mainly used to enhance the mesoporous structure and acid, and F127 acted as a grain growth inhibitor. According to the orientation growth mechanism of the molecular sieves, the crystallization mechanism of the nano-rod-shaped hierarchical porous molecular sieves with different crystallization times was investigated. It was found that the nano-rod-shaped molecular sieves were formed by the accumulation of nano-sheets. Compared to three nickel catalysts with different silicoaluminophosphate SAPO-11 molecular sieves in the hydroisomerization of oleic acid to iso-alkanes, the bifunctional catalyst of 7% Ni/SAPO-11-A-F had higher isomeric selectivity (79.8%); in particular, the isomeric octadecane showed stronger selectivity, indicating that the nano-rod-shaped SAPO-11 molecular sieve is more beneficial for the hydrodehydration reaction.
CITATION STYLE
Yang, L., Li, H., Fu, J. Y., Li, M., Miao, C., Wang, Z., … Yuan, Z. (2019). Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes. RSC Advances, 9(59), 34457–34464. https://doi.org/10.1039/c9ra06117g
Mendeley helps you to discover research relevant for your work.