To remove NO3-N from water, coconut shell biochar (CSB) was modified by a solution of FeCl3, a solution of AlCl3 and a mixture solution of FeCl3 and AlCl3 respectively. The obtained modified biochar with the best effect of NO3-N adsorption was screened out to explore the adsorption behavior and mechanism of NO3-N removal by batch experiments and kinetics and thermodynamics and correlated characterization. The results indicated that the mixture solution of FeCl3- and AlCl3- modified CSB (Fe-Al/CSB) showed the best adsorption performance for NO3-N removal. Iron and aluminum elements existed on the surface of Fe-Al/CSB in the form of FeOOH, Fe2O3, Fe2+, and Al2O3 respectively. The adsorption process could reach equilibrium in 20 min. An acidic condition was favorable for NO3-N adsorption. The presence of coexisting anions was not conducive for NO3-N adsorption. The quasi-second-order model and Freundlich model could be well fitted in the adsorption process. The maximum adsorption capacity of Fe-Al/CSB fitted by the Langmuir model could reach 34.20 mg/g. The adsorption of NO3-N by Fe-Al/CSB was an endothermic and spontaneous process. Ligand exchange and chemical redox reaction were the NO3-N adsorption mechanisms which led to NO3-N adsorption by Fe-Al/CSB.
CITATION STYLE
You, H., Li, W., Zhang, Y., Meng, Z., Shang, Z., Feng, X., … Niu, X. (2020). Enhanced removal of NO3-N from water using Fe-Al modified biochar: Behavior and mechanism. Water Science and Technology, 80(10), 2003–2012. https://doi.org/10.2166/wst.2020.033
Mendeley helps you to discover research relevant for your work.