The immunosuppressive effects of glucocorticoids arise largely by inhibition of cytokine gene expression, which has been ascribed to interference between the glucocorticoid receptor and transcription factors such as AP-1 and NF-κB as well as by competition for common coactivators. Here we show that glucocorticoid-induced inhibition of interleukin-2 mRNA expression in activated normal T cells required new protein synthesis, suggesting that this phenomenon is secondary to expression of glucocorticoid-regulated genes. One of the most prominent glucocorticoid-induced genes is glucocorticoid-induced leucine zipper (GILZ), which has been reported to inhibit activation-induced up-regulation of Fas ligand (FasL) mRNA. Indeed, transient expression of GILZ in Jurkat T cells blocked induction of a reporter construct driven by the FasL promoter. This could be accounted for by GILZ-mediated inhibition of Egr-2 and Egr-3, NFAT/AP-1-inducible transcription factors that bind a regulatory element in the FasL promoter and up-regulate FasL expression. GILZ also potently inhibited AP-1-driven and IL-2 promoter-driven reporter constructs, and recombinant GILZ specifically interacted with c-Fos and c-Jun in vitro and inhibited the binding of active AP-1 to its target DNA. Whereas homodimerization of GILZ required the presence of its leucine zipper, the interaction with c-Fos and c-Jun occurred through the N-terminal 60-amino acid region of GILZ. Thus, GILZ represents a glucocorticoid-induced gene product that can inhibit a variety of activation-induced events, at least in part by direct interference with AP-1, and is therefore a candidate for a mediator of glucocorticoid-induced immunosuppression.
CITATION STYLE
Mittelstadt, P. R., & Ashwell, J. D. (2001). Inhibition of AP-1 by the Glucocorticoid-inducible Protein GILZ. Journal of Biological Chemistry, 276(31), 29603–29610. https://doi.org/10.1074/jbc.M101522200
Mendeley helps you to discover research relevant for your work.