No correlation between distorted body representations underlying tactile distance perception and position sense

27Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

Abstract

Both tactile distance perception and position sense are believed to require that immediate afferent signals be referenced to a stored representation of body size and shape (the body model). For both of these abilities, recent studies have reported that the stored body representations involved are highly distorted, at least in the case of the hand, with the hand dorsum represented as wider and squatter than it actually is. Here, we investigated whether individual differences in the magnitude of these distortions are shared between tactile distance perception and position sense, as would be predicted by the hypothesis that a single distorted body model underlies both tasks. We used established tasks to measure distortions of the represented shape of the hand dorsum. Consistent with previous results, in both cases there were clear biases to overestimate distances oriented along the medio-lateral axis of the hand compared to the proximo-distal axis. Moreover, within each task there were clear split-half correlations, demonstrating that both tasks show consistent individual differences. Critically, however, there was no correlation between the magnitudes of distortion in the two tasks. This casts doubt on the proposal that a common body model underlies both tactile distance perception and position sense.

Cite

CITATION STYLE

APA

Longo, M. R., Morcom, R., Pia, L., Preston, C., & Romano, D. (2016). No correlation between distorted body representations underlying tactile distance perception and position sense. Frontiers in Human Neuroscience, 10(NOV2016). https://doi.org/10.3389/fnhum.2016.00593

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free