Analisis Curah Hujan Menggunakan Machine Learning Metode Regresi Linier Berganda Berbasis Python dan Jupyter Notebook

  • Pebralia J
N/ACitations
Citations of this article
136Readers
Mendeley users who have this article in their library.

Abstract

Indonesia is a country located on the equator. As a result, Indonesia has a dry season and a rainy season. Rainfall prediction is very useful in various fields. The prediction method that is currently developing rapidly is the prediction method using artificial intelligence (AI) techniques. Machine learning is a subset of AI. The application of multiple linear regression algorithms in machine learning can be used to predict a dependent variable with various types of independent variables that affect it. In this study, rainfall prediction has been carried out involving three independent variables, namely wind speed, maximum air temperature, and minimum air temperature with dataset obtained from the kaggle.com site. The dataset used is 6,574 data, where the data is grouped into training data as much as 80% and test data as much as 20%. Multiple linear regression algorithm is written in Python programming language and implemented using jupyter notebook. In this study, a multiple linear regression model was produced with the equation ,, MSE value was 14.02, RMSE was 3.74, and MAE was 2.27.Indonesia merupakan negara yang berada di garis khatulistiwa. Akibatnya Indonesia memiliki musim kemarau dan musim penghujan. Prediksi curah hujan sangat bermanfaat dalam berbagai bidang. Metode prediksi yang sedang berkembang dengan pesat pada saat ini yaitu metode prediksi menggunakan teknik kecerdasan buatan (Artificial Intelligent/AI). Machine learning adalah bagian dari AI. Penerapan algoritma regresi linier berganda pada machine learning dapat digunakan untuk memprediksi suatu variable terikat dengan berbagai jenis variable bebas yang mempengaruhinya. Pada penelitian ini, telah dilakukan prediksi curah hujan dengan melibatkan tiga variable bebas yaitu kecepatan angin, suhu udara maksimum,dan suhu udara minimum dengan dataset diperoleh dari situs kaggle.com. Dataset yang digunakan berjumlah 6.574 data, dimana data tersebut dikelompokkan ke dalam data training sebanyak 80% dan data test sebanyak 20%. Algoritma regresi linier berganda dibuat dalam Bahasa pemrograman python dan diimplementasikan menggunakan jupyter notebook. Pada penelitian ini dihasilkan model regresi linier berganda dengan persamaan , nilai MSE sebesar 14.02, RMSE sebesar 3.74, dan MAE sebesar 2.27.

Cite

CITATION STYLE

APA

Pebralia, J. (2022). Analisis Curah Hujan Menggunakan Machine Learning Metode Regresi Linier Berganda Berbasis Python dan Jupyter Notebook. Jurnal Ilmu Fisika Dan Pembelajarannya (JIFP), 6(2), 23–30. https://doi.org/10.19109/jifp.v6i2.13958

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free