Self-assembly of the blood protein fibrinogen is a highly relevant topic in materials science and medical research. This originates from fibrinogen’s beneficial material properties such as cell interaction and biocompatibility. Within recent decades, several enzyme-free strategies to create fibers and hydrogels out of fibrinogen have been presented, broadening the spectrum of fibrinogen-based material enormously. Herein, we describe a further method to obtain such a material by adding specifically MgSO4 to fibrinogen. The key of this material is the combination of Mg2+ and a kosmotropic anion, for example sulfate or (hydrogen)phosphate. This effect is most likely related to occupancy of fibrinogen’s well-known binding sites for Mg2+, resulting in a significant increase in fiber yield and gel stability. Here, we shine light on the question of how electrostatic interactions via Mg2+ enhance fibrillogenesis and the gelation of fibrinogen and discuss first insights into the material’s properties.
CITATION STYLE
Hense, D., & Strube, O. I. (2023). Thrombin-Free Fibrillogenesis and Gelation of Fibrinogen Triggered by Magnesium Sulfate. Gels, 9(11). https://doi.org/10.3390/gels9110892
Mendeley helps you to discover research relevant for your work.