The Role of Two Linear β-Glucans Activated by c-di-GMP in Rhizobium etli CFN42

7Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Bacterial exopolysaccharides (EPS) have been implicated in a variety of functions that assist in bacterial survival, colonization, and host–microbe interactions. Among them, bacterial linear β-glucans are polysaccharides formed by D-glucose units linked by β-glycosidic bonds, which include curdlan, cellulose, and the new described Mixed Linkage β-Glucan (MLG). Bis-(3′,5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a universal bacterial second messenger that usually promote EPS production. Here, we report Rhizobium etli as the first bacterium capable of producing cellulose and MLG. Significant amounts of these two β-glucans are not produced under free-living laboratory conditions, but their production is triggered upon elevation of intracellular c-di-GMP levels, both contributing to Congo red (CR+) and Calcofluor (CF+) phenotypes. Cellulose turned out to be more relevant for free-living phenotypes promoting flocculation and biofilm formation under high c-di-GMP conditions. None of these two EPS are essential for attachment to roots of Phaseolus vulgaris, neither for nodulation nor for symbiotic nitrogen fixation. However, both β-glucans separately contribute to the fitness of interaction between R. etli and its host. Overproduction of these β-glucans, particularly cellulose, appears detrimental for symbiosis. This indicates that their activation by c-di-GMP must be strictly regulated in time and space and should be controlled by different, yet unknown, regulatory pathways.

Cite

CITATION STYLE

APA

Pérez-Mendoza, D., Romero-Jiménez, L., Rodríguez-Carvajal, M. Á., Lorite, M. J., Muñoz, S., Olmedilla, A., & Sanjuán, J. (2022). The Role of Two Linear β-Glucans Activated by c-di-GMP in Rhizobium etli CFN42. Biology, 11(9). https://doi.org/10.3390/biology11091364

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free