Superlubricity of epitaxial monolayer WS2 on graphene

65Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report the superlubric sliding of monolayer tungsten disulfide (WS2) on epitaxial graphene (EG) grown on silicon carbide (SiC). Single-crystalline WS2 flakes with lateral size of hundreds of nanometers are obtained via chemical vapor deposition (CVD) on EG. Microscopic and diffraction analyses indicate that the WS2/EG stack is predominantly aligned with zero azimuthal rotation. The present experiments show that, when perturbed by a scanning probe microscopy (SPM) tip, the WS2 flakes are prone to slide over the graphene surfaces at room temperature. Atomistic force field-based molecular dynamics simulations indicate that, through local physical deformation of the WS2 flake, the scanning tip releases enough energy to the flake to overcome the motion activation barrier and trigger an ultralow-friction rototranslational displacement, that is superlubric. Experimental observations show that, after sliding, the WS2 flakes come to rest with a rotation of nπ/3 with respect to graphene. Moreover, atomically resolved measurements show that the interface is atomically sharp and the WS2 lattice is strain-free. These results help to shed light on nanotribological phenomena in van der Waals (vdW) heterostacks, and suggest that the applicative potential of the WS2/graphene heterostructure can be extended by novel mechanical prospects. [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Büch, H., Rossi, A., Forti, S., Convertino, D., Tozzini, V., & Coletti, C. (2018). Superlubricity of epitaxial monolayer WS2 on graphene. Nano Research, 11(11), 5946–5956. https://doi.org/10.1007/s12274-018-2108-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free