The current industrial production of polymer building blocks such as ε-caprolactone (ε-CL) and 6-hydroxyhexanoic acid (6HA) is a multi-step process associated with critical environmental issues such as the generation of toxic waste and high energy consumption. Consequently, there is a demand for more eco-efficient and sustainable production routes. This study deals with the generation of a platform organism that converts cyclohexane to such polymer building blocks without the formation of byproducts and under environmentally benign conditions. Based on kinetic and thermodynamic analyses of the individual enzymatic steps, a 4-step enzymatic cascade in Pseudomonas taiwanensis VLB120 is rationally engineered via stepwise biocatalyst improvement on the genetic level. It is found that the intermediate product cyclohexanol severely inhibits the cascade which could be optimized by enhancing the expression level of downstream enzymes. The integration of a lactonase enables exclusive 6HA formation without side products. The resulting biocatalyst shows a high activity of 44.8 ± 0.2 U gCDW−1 and fully converts 5 mm cyclohexane to 6HA within 3 h. This platform organism can now serve as a basis for the development of greener production processes for polycaprolactone and related polymers.
CITATION STYLE
Schäfer, L., Bühler, K., Karande, R., & Bühler, B. (2020). Rational Engineering of a Multi-Step Biocatalytic Cascade for the Conversion of Cyclohexane to Polycaprolactone Monomers in Pseudomonas taiwanensis. Biotechnology Journal, 15(11). https://doi.org/10.1002/biot.202000091
Mendeley helps you to discover research relevant for your work.