Prevention of programmed hyperleptinemia and hypertension by postnatal dietary ω-3 fatty acids

103Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Fetal programming is now recognized as a key determinant of the adult phenotype, with major implications for adult-onset diseases including hypertension. Two mediators of fetal programming are maternal nutrition and fetal glucocorticoid exposure. Recent studies show that postnatal dietary manipulations can exacerbate programming effects, but whether programming effects can be attenuated by postnatal dietary manipulations, and thus provide a possible therapeutic strategy, is unknown. In this study, we tested the hypothesis that a postnatal diet enriched with long-chain ω-3 fatty acids attenuates programmed hyperleptinemia and hypertension. Pregnant rats were treated with dexamethasone (Dex) from d 13 to term, and offspring were cross-fostered to mothers on either a standard diet or a diet high in ω-3 fatty acids and remained on these diets postweaning. Maternal Dex reduced birthweight and delayed the onset of puberty in offspring. Hyperleptinemia (associated with elevated leptin mRNA expression in adipose tissue) and hypertension were evident in offspring by 6 months of age in Dex-exposed animals consuming a standard diet, but these effects were completely blocked by a high ω-3 diet. These results demonstrate for the first time that manipulation of postnatal diet can limit adverse outcomes of fetal programming, with programmed hyperleptinemia and hypertension prevented by a postnatal diet enriched with ω-3 fatty acids. This raises the possibility that dietary supplementation with ω-3 fatty acids may provide a viable therapeutic option for preventing and/or reducing adverse programming outcomes in humans. Copyright © 2006 by The Endocrine Society.

Cite

CITATION STYLE

APA

Wyrwoll, C. S., Mark, P. J., Mori, T. A., Puddey, I. B., & Waddell, B. J. (2006). Prevention of programmed hyperleptinemia and hypertension by postnatal dietary ω-3 fatty acids. Endocrinology, 147(1), 599–606. https://doi.org/10.1210/en.2005-0748

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free