Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts

48Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

Abstract

Salt inducible kinase (SIK) 1, a member of the AMP-activated kinase (AMPK) family, is activated by the AMPK-activator LKB1 which phosphorylates SIK1 at Thrl82. The activated SIK1 then auto-phosphorylates its Serl86 located at the +4 position of Thr182. The phospho-Ser186 is essential for sustained activity of SIK1, which is maintained by sequential phosphorylation at Ser186-Thr182 by glycogen synthase kinase (GSK)-3β. Meanwhile, SIK1 represses the transcription factor cAMP-response element binding protein (CREB) by phosphorylating its co-activator transducer of regulated CREB activity (TORC). Recently, histone deacetylase (HDAC) 5 was identified as a new substrate of SIK1. Inhibition of SIK1 or AMPK results in the stimulation of glyconeogensis in the liver by enhancing dephosphorylation of TORC2 followed by up-regulation of peroxisome proliferator-activated receptor coactivator (PGC)-lα gene expression. However, expression of the PGC-lα gene has been found to be repressed in LKB1 -defective muscle cells. Our findings show that the AMPK agonist 5-aminoimidazole-4-carboxamide-l-beta-d-ribofuranoside (AICAR)-dependent expression of PGC-1α is diminished by inhibitors of GSK-3β or SIKs in C2C12 myoblasts. Treatment with AICAR or the overexpression of SIK1 induces nuclear export of HDAC5 followed by the activation of myogenic transcription factor (MEF)-2C. The levels of phosphorylation at Thr182 and Ser186 of SIK1 in AICAR-treated C2C12 cells are elevated, and GSK-3P enzyme purified from AICAR-treated cells shows enhanced phosphorylation activity of SIK1 in vitro. These observations suggest that GSK-3β and SIK1 may play important roles in the regulation of PGC-1α gene expression by inactivating HDAC5 followed by activation of MEF2C.

Author supplied keywords

Cite

CITATION STYLE

APA

Takemori, H., Hashimoto, Y. K., Nakae, J., Olson, E. N., & Okamoto, M. (2009). Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Endocrine Journal, 56(1), 121–130. https://doi.org/10.1507/endocrj.K08E-173

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free