The climate system of the Earth atmosphere is affected by a complex interplay of dynamical, physical and chemical processes acting in the troposphere (atmospheric layer reaching from the Earth surface up to about 12 km height) and the Middle Atmosphere, i.e. the stratosphere (from about 12 to 50 km) and the mesosphere (from 50 to 100 km). Moreover, mutual influences between these atmospheric layers must be taken into account to get a complete picture of the Earth climate system. An outstanding example which can be used to describe some of the complex connections of atmospheric processes is the evolution of the ozone layer in the stratosphere and its interrelation with climate change. The stratospheric ozone layer (located around 15 to 35 km) protects life on Earth because it filters out a large part of the ultraviolet (UV) radiation (wavelength range between 100 nm and 380 nm) which is emitted by the sun. The almost complete absorption of the energyintensive solar UV-B radiation (280-320 nm) is especially important. UV-B radiation particularly affects plants, animals and people. Increased UV-B radiation can, for example, adversely impact photosynthesis, cause skin cancer and weaken the immune system. In addition, absorption of solar UV radiation by the stratospheric ozone layer causes the temperature of the stratosphere to increase with height, creating a stable layer that limits strong vertical air movement. This plays a key role for the Earth’s climate system. Approximately 90% of the total ozone amount is found in the stratosphere. Only 10% is in the troposphere; ozone concentrations in the troposphere are much lower than in the stratosphere. Data derived from observations (measurements from satellites and ground-based instruments) and respective results from numerical simulations with atmospheric models are used to describe and explain recent alterations of the dynamics and chemistry of the atmosphere. Since the beginning of the 1980ies in each year the ozone hole develops over Antarctica during spring season (i.e. September to November), showing a decrease in the total amount of ozone of up to 70% (see Figure 4). Especially in the lower stratosphere (about 15-25 km altitude), ozone is almost completely destroyed during this season. Relatively shortly after the discovery of the ozone hole, the extreme thinning of the ozone layer in the south-polar
CITATION STYLE
Dameris, M., & Loyol, D. (2011). Chemistry-Climate Connections – Interaction of Physical, Dynamical, and Chemical Processes in Earth Atmosphere. In Climate Change - Geophysical Foundations and Ecological Effects. InTech. https://doi.org/10.5772/24210
Mendeley helps you to discover research relevant for your work.