This paper deals with two complementary problems: the problem of extracting knowledge from neural networks and the problem of inserting knowledge into neural networks. Our approach to the extraction of knowledge is essentially constraints-based. Local constraints are imposed on the neural network's weights and activities to make neural networkunits work as logical operators. We have modified two well-known learning algorithms, namely the simulated annealing and the backpropagation, with respect to imposed constraints. In the case of the non-empty domain theory, the knowledge insertion technique is used to impose global constraints to determine the neural network's topology and initialization according to a priori knowledge about the problem under study. The knowledge to be inserted can be expressed as a set of propositional rules. We report simulation results obtained by running our algorithms to extract boolean formulae.
CITATION STYLE
Kane, R., Tchoumatchenko, I., & Milgram, M. (1993). Extraction of knowledge from data using constrained neural networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 667 LNAI, pp. 420–425). Springer Verlag. https://doi.org/10.1007/3-540-56602-3_161
Mendeley helps you to discover research relevant for your work.